Neuronal migration depends on intact peroxisomal function in brain and in extraneuronal tissues.

نویسندگان

  • Anneleen Janssen
  • Pierre Gressens
  • Markus Grabenbauer
  • Eveline Baumgart
  • Arno Schad
  • Ilse Vanhorebeek
  • Annelies Brouwers
  • Peter E Declercq
  • Dariush Fahimi
  • Philippe Evrard
  • Luc Schoonjans
  • Désiré Collen
  • Peter Carmeliet
  • Guy Mannaerts
  • Paul Van Veldhoven
  • Myriam Baes
چکیده

Functional peroxisome deficiency, as encountered in Zellweger syndrome, causes a specific impairment of neuronal migration. Although the molecular mechanisms underlying the neuronal migration defect are at present unknown, the excess of very long chain fatty acids in brain, a consequence of peroxisomalbeta-oxidation deficiency, has often been hypothesized to play a major role. The purpose of the present study was to investigate the contribution of peroxisomal dysfunction in brain as opposed to peroxisomal dysfunction in extraneuronal tissues to the migration defect. Peroxisomes were selectively reconstituted either in brain or liver of Pex5 knock-out mice, a model for Zellweger syndrome, by tissue-selective overexpression of Pex5p. We found that both rescue strains exhibited a significant correction of the neuronal migration defect despite an incomplete reconstitution of peroxisomal function in the targeted tissue. Animals with a simultaneous rescue of peroxisomes in both tissues displayed a pattern of neuronal migration indistinguishable from that of wild-type animals on the basis of cresyl violet staining and 5',3'-bromo-2'-deoxyuridine birth-dating analysis. These data suggest that peroxisomal metabolism in brain but also in extraneuronal tissues affects the normal development of the mouse neocortex. In liver-rescued mice, the improvement of the neuronal migration was not accompanied by changes in very long chain fatty acid, docosahexaenoic acid, or plasmalogen levels in brain, indicating that other metabolic factors can influence the neuronal migration process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Peroxisomal Malfunction Caused by Mitochondrial Toxin 3-NP: Protective Role of Oxytocin

Peroxisomes are single membrane cell organelles with a diversity of metabolic functions. Here we studied the peroxisomal dysfunction and oxidative stress after 3-nitropropionic acid (3-NP) induced neurotoxicity and the possible protective effects of oxytocin. Adult male and female rats were subjected to Oxt and/or 3-NP treatment. The antioxidant enzymes, Superoxide dismutase (SOD) and Catalase ...

متن کامل

Peroxisomal Malfunction Caused by Mitochondrial Toxin 3-NP: Protective Role of Oxytocin

Peroxisomes are single membrane cell organelles with a diversity of metabolic functions. Here we studied the peroxisomal dysfunction and oxidative stress after 3-nitropropionic acid (3-NP) induced neurotoxicity and the possible protective effects of oxytocin. Adult male and female rats were subjected to Oxt and/or 3-NP treatment. The antioxidant enzymes, Superoxide dismutase (SOD) and Catalase ...

متن کامل

P75: Expression of GDNF Genes in the Cerebellum of Rat Neonate Born to Mother with Diabetes

Diabetes Mellitus as a common metabolic disorder in women of reproductive age is rising throughout the globe. Diabetes in pregnancy has various adverse outcomes on different organs development including the central nervous system (CNS) and it can cause learning deficits, behavioral problems and motor dysfunctions in the offspring. The cerebellum is a part of brain that coordinates voluntary mov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 30  شماره 

صفحات  -

تاریخ انتشار 2003